задачи на сечение
Submitted by Лидия Михайловна Бучнева on чт, 05/11/2015 - 05:43
Данные об авторе
Автор(ы):
Бучнева Лидия Михайловна
Место работы, должность:
МБОУ СОШ с УИОП №80
Учитель математики
Характеристики урока (занятия)
Уровень образования:
среднее (полное) общее образование
Целевая аудитория:
Учащийся (студент)
Цель урока:
Цели урока
1. Ознакомиться с основами решения задач на построение сечений тетраэдра и параллелепипеда плоскостью.
2. Выделить виды задач на построение сечений.
3. Выработать навыки решения задач на построение сечений тетраэдра и параллелепипеда.
4. Формирование пространственного воображения.
Тип урока:
Урок закрепления знаний
Учащихся в классе (аудитории):
28
Используемые учебники и учебные пособия:
1.Учебник: Геометрия 10-11: Л.С.Атанасян, В.Ф.Бутузов, С.Б.Кадомцев и др. Учебник для 10-11 классов общеобразовательных учреждений. Базовый и профильный уровни. Москва.Просвещение. 2011
2.Б.Г.Зив Дидактические материалы по геометрии для 10 класса. Москва. Просвещение.2011
3.С.М.Саакян, В.Ф. Бутузов. Изучение геометрии в 10-11 классах. Книга для учителя. Москва. Просвещение.2010.
Используемая методическая литература:
1.Ю.А.Глазков, И.И.Юдина, В.Ф.Бутузов. Рабочая тетрадь по геометрии для 10 класса. - М.:Просвещение,2010.
2.Математика. Тренировочные тематические задания повышенной сложности с ответами для подготовки к ЕГЭ и к другим формам выпускного и вступительного экзаменов/сост.Г.И.Ковалева и др. - Волгоград: Учитель,2010г./
3. В.А. Яровенко.Поурочные разработки по геометрии. Дифференцированный подход, 10 класс.Москва. "ВАКО". 2006
4.Е.М. Рабинович. Математика. Задачи на готовых чертежах. Геометрия. 10-11 классы. Москва.ИЛЕКСА.2008
Используемое оборудование:
компьютер, экран, проектор
Краткое описание:
<p>Ход урока.<br /> I Организационный момент.<br /> <br /> II Проверка домашнего задания.<br /> Ребята, какие геометрические тела мы изучали на последних уроках? (тетраэдр, параллелепипед).<br /> <br /> Что называется тетраэдром?<br /> Что называется параллелепипедом?<br /> Что же мы будем понимать под <strong><u>секущей плоскостью</u></strong>?<br /> <strong><u>(Секущей плоскостью</u></strong> называют любую плоскость, по обе стороны от которой имеются точки данного многогранника.) <br /> Следующее понятие – это <strong><u>сечение</u></strong><br /> Где располагаются стороны многоугольника, который является сечением?<br /> Где располагаются вершины многоугольника, который является сечением?</p> <p><strong><u>Что значит построить сечение многогранника плоскостью.</u></strong></p> <p>(Таким образом, мы в каждой грани будем строить отрезки, по которым секущая плоскость пересекает грани).<br /> Чтобы грамотно построить сечение надо уметь применять различные теоремы и свойства. Ответим на вопрос.<br /> <strong><u>Какие из данных утверждений могут пригодиться при построении сечений?</u></strong><br /> <br /> <br /> 1. Если две плоскости имеют общую точку, то они пересекаются по прямой, содержащей эту точку.<br /> <br /> 2. Если прямая, лежащая, в одной из пересекающихся плоскостей, пересекает другую плоскость, то она пересекает линию пересечения плоскостей.<br /> <br /> 3. Если две параллельные плоскости, пересечены третьей, то линии пересечения плоскостей параллельны.<br /> 4. Секущая, плоскость пересекает грань многогранника по ломаной линии.<br /> <br /> 5. В сечении параллелепипеда плоскостью, может получиться:<br /> </p> <p>отрезок</p> <p>треугольник</p> <p>четырёхугольник</p> <p>пятиугольник</p> <p>шестиугольник</p> <p>Семиугольник</p> <h2><strong>2.Проверка задач № 87, №102 из домашней работы</strong></h2> <h2><strong>( </strong>ученики выполняют чертежи на доске<strong>)</strong></h2> <h2><strong>3. Решение практических задач №1, №2(86уч.),№3</strong></h2> <p>(Работа в тетрадях с последующей проверкой у доски и по слайдам</p> <p><strong>4.</strong><strong> Закрепление новой темы.</strong></p> <p>(Самостоятельно строят сечения, проверка по готовым чертежам)</p> <p>( Слайд )<br /> (Алгоритм построения сечений)</p> <p>(Слайд )</p> <p><strong>5. Подведение итогов.</strong></p> <p>Отвечают на вопросы:</p> <p>Какие многоугольники могут получиться в сечении тетраэдра и параллелепипеда?<br /> Какие у нас многоугольники получились?<br /> Достигнута ли цель, поставленная в начале урока?</p> <p><strong>6. Выставление оценок, запись</strong> <a href="http://festival.1september.ru/articles/566470/" target="_blank"><strong>дом</strong></a><strong>. зад. - № 103,№ 104.</strong></p>
«Построение сечений тетраэдра и параллелепипеда»
Цели урока
1. Ознакомиться с основами решения задач на построение сечений тетраэдра и параллелепипеда плоскостью.
Submitted by Лидия Михайловна Бучнева on чт, 05/11/2015 - 05:42
Данные об авторе
Автор(ы):
Бучнева Лидия Михайловна
Место работы, должность:
МБОУ СОШ с УИОП №80
Учитель математики
Характеристики урока (занятия)
Уровень образования:
среднее (полное) общее образование
Целевая аудитория:
Учащийся (студент)
Цель урока:
Цели урока
1. Ознакомиться с основами решения задач на построение сечений тетраэдра и параллелепипеда плоскостью.
2. Выделить виды задач на построение сечений.
3. Выработать навыки решения задач на построение сечений тетраэдра и параллелепипеда.
4. Формирование пространственного воображения.
Тип урока:
Урок закрепления знаний
Учащихся в классе (аудитории):
28
Используемые учебники и учебные пособия:
1.Учебник: Геометрия 10-11: Л.С.Атанасян, В.Ф.Бутузов, С.Б.Кадомцев и др. Учебник для 10-11 классов общеобразовательных учреждений. Базовый и профильный уровни. Москва.Просвещение. 2011
2.Б.Г.Зив Дидактические материалы по геометрии для 10 класса. Москва. Просвещение.2011
3.С.М.Саакян, В.Ф. Бутузов. Изучение геометрии в 10-11 классах. Книга для учителя. Москва. Просвещение.2010.
Используемая методическая литература:
1.Ю.А.Глазков, И.И.Юдина, В.Ф.Бутузов. Рабочая тетрадь по геометрии для 10 класса. - М.:Просвещение,2010.
2.Математика. Тренировочные тематические задания повышенной сложности с ответами для подготовки к ЕГЭ и к другим формам выпускного и вступительного экзаменов/сост.Г.И.Ковалева и др. - Волгоград: Учитель,2010г./
3. В.А. Яровенко.Поурочные разработки по геометрии. Дифференцированный подход, 10 класс.Москва. "ВАКО". 2006
4.Е.М. Рабинович. Математика. Задачи на готовых чертежах. Геометрия. 10-11 классы. Москва.ИЛЕКСА.2008
Используемое оборудование:
компьютер, экран, проектор
Краткое описание:
<p>Ход урока.<br /> I Организационный момент.<br /> <br /> II Проверка домашнего задания.<br /> Ребята, какие геометрические тела мы изучали на последних уроках? (тетраэдр, параллелепипед).<br /> <br /> Что называется тетраэдром?<br /> Что называется параллелепипедом?<br /> Что же мы будем понимать под <strong><u>секущей плоскостью</u></strong>?<br /> <strong><u>(Секущей плоскостью</u></strong> называют любую плоскость, по обе стороны от которой имеются точки данного многогранника.) <br /> Следующее понятие – это <strong><u>сечение</u></strong><br /> Где располагаются стороны многоугольника, который является сечением?<br /> Где располагаются вершины многоугольника, который является сечением?</p> <p><strong><u>Что значит построить сечение многогранника плоскостью.</u></strong></p> <p>(Таким образом, мы в каждой грани будем строить отрезки, по которым секущая плоскость пересекает грани).<br /> Чтобы грамотно построить сечение надо уметь применять различные теоремы и свойства. Ответим на вопрос.<br /> <strong><u>Какие из данных утверждений могут пригодиться при построении сечений?</u></strong><br /> <br /> <br /> 1. Если две плоскости имеют общую точку, то они пересекаются по прямой, содержащей эту точку.<br /> <br /> 2. Если прямая, лежащая, в одной из пересекающихся плоскостей, пересекает другую плоскость, то она пересекает линию пересечения плоскостей.<br /> <br /> 3. Если две параллельные плоскости, пересечены третьей, то линии пересечения плоскостей параллельны.<br /> 4. Секущая, плоскость пересекает грань многогранника по ломаной линии.<br /> <br /> 5. В сечении параллелепипеда плоскостью, может получиться:<br /> </p> <p>отрезок</p> <p>треугольник</p> <p>четырёхугольник</p> <p>пятиугольник</p> <p>шестиугольник</p> <p>Семиугольник</p> <h2><strong>2.Проверка задач № 87, №102 из домашней работы</strong></h2> <h2><strong>( </strong>ученики выполняют чертежи на доске<strong>)</strong></h2> <h2><strong>3. Решение практических задач №1, №2(86уч.),№3</strong></h2> <p>(Работа в тетрадях с последующей проверкой у доски и по слайдам</p> <p><strong>4.</strong><strong> Закрепление новой темы.</strong></p> <p>(Самостоятельно строят сечения, проверка по готовым чертежам)</p> <p>( Слайд )<br /> (Алгоритм построения сечений)</p> <p>(Слайд )</p> <p><strong>5. Подведение итогов.</strong></p> <p>Отвечают на вопросы:</p> <p>Какие многоугольники могут получиться в сечении тетраэдра и параллелепипеда?<br /> Какие у нас многоугольники получились?<br /> Достигнута ли цель, поставленная в начале урока?</p> <p><strong>6. Выставление оценок, запись</strong> <a href="http://festival.1september.ru/articles/566470/" target="_blank"><strong>дом</strong></a><strong>. зад. - № 103,№ 104.</strong></p>
«Построение сечений тетраэдра и параллелепипеда»
Цели урока
1. Ознакомиться с основами решения задач на построение сечений тетраэдра и параллелепипеда плоскостью.