Место работы:
учитель начальных классов I квалификационной категории МОУ «СОШ №11 с углубленным изучением иностранных языков» г. Ноябрьска ЯНАО Тюменской области
Разработа урока математики для 4 класса по теме «Сравнение углов»
Предмет: математика.
Класс: 4.
Тема: «Сравнение углов».
Тип урока: изучение нового материала.
Оборудование:
- карточки с числами-буквами;
- модель часов;
- углы (по три штуки) у каждого ученика.
Цель:
- Познакомить учащихся с приемом сравнения углов с помощью наложения; с понятием биссектриса; выполнять построение биссектрисы перегибанием листа;
- повторить задачи на нахождение дроби числа; отрабатывать навыки действий с именованными числами.
Ход урока
I. Организация класса
II. Актуализация опорных знаний
- Использование метода обратной связи.
- Ответы дети записывают на маркерных досках.
1) Математический диктант:
- уменьшить 60 на 8;
- увеличить 49 на 6;
- уменьшить 560 в 8 раз;
- увеличить 7 в 9 раз;
- во сколько раз 40 меньше 240;
- найти произведение чисел 6 и 20.
Ответы: 52, 55, 70, 63, 6, 120.
- Развитие мыслительных операций (классификации).
− На какие группы можно разделить данный ряд чисел? (Четные – нечетные; круглые – некруглые; однозначные, двузначные, трехзначные; сумма цифр в записи 7.)
2) Расположить числа в порядке возрастания и прочитать ключевое слово сегодняшнего урока.
- Повторение ранее изученного.
3) Назовите геометрические фигуры, которые видите на рисунке.
− Какие фигуры можно неограниченно продолжить? (Прямую, луч, стороны угла.)
− Чем являются стороны угла: отрезками или лучами?
− Какие виды углов вы знаете?
4) Постройте прямой угол с помощью 2 карандашей. (…острый; тупой.)
5) Перед вами модель часов. Передвиньте стрелки часов так, чтобы они показывали 1 час, 2 часа, 3 часа, 5 часов.
− Что происходит с углом между стрелками? (Увеличивается.)
− Значит, мы можем сказать какой угол между стрелками часов больше, а какой меньше?
III. Создание проблемной ситуации
− На парте у каждого из вас есть модель углов.
− Сравните, какой угол больше? Почему?
− Почему разные ответы у детей и по-разному наложили треугольники?
IV. Постановка учебной задачи
- Дети самостоятельно обосновывают, что они не знают.
− Какое задание выполняли? (Сравнивали углы.)
− Почему не смогли обозначить свою точку зрения? (Неизвестен способ сравнения углов.)
− Что же надо нам сделать? Поставьте перед собой цель. (Научиться сравнивать углы, построить алгоритм сравнения углов.)
− Сформулируйте тему урока. (Сравнение углов.)
- Дети формулируют тему урока.
V. «Открытие» новых знаний
- Решение проблемы с помощью практической работы.
− Каким способом мы сравниваем что-то, например, число или доли, фигуры на плоскости? (Меньшее должно содержаться в большем.)
− Значит, как надо наложить углы? (Чтобы один угол составлял часть другого.)
1) Возьмите зеленый угол (по размеру такой же, как и желтый), наложите на желтый – убедитесь, что они равны.
− То как надо наложить желтый и черный, чтобы сравнить их, посоветуйтесь в группах.
2) Построение алгоритма.
- Коллективное построение алгоритма.
3) Сравнение вывода с текстом в учебнике на странице 1.
- Проблемное решение ситуации деятельностным методом.
VI. Первичное закрепление
− Посмотрите, как девочки сравнили, чей веер образует больший угол?
− Какой способ наложения верный? Обоснуйте, используя алгоритм.
− Сравните углы.
VII. Знакомство с понятием «биссектриса»
- Введение понятия «биссектриса» методом практической работы.
− Возьмите модель зеленого угла, согните так, чтобы разделить его на 2 равные части.
− Разверните. Что вы увидели? (Луч, который делит угол на 2 равные части, называется биссектрисой.)
VIII. Самостоятельная работа
- Создание ситуации успеха.
− Сравните углы на глаз, расположите соответствующие буквы в порядке возрастания величин углов и узнайте имя знаменитого правителя Древнего Египта. Ответ напишите на маркерной доске. (Хеопс.)
IX. Итог урока
− Чему учились?
− Как надо наложить углы для сравнения? (Проговорить алгоритм.)
Х. Домашнее задание
- Творческое домашнее задание.
- №3, 13 с. 2.
- Составить опорный конспект к уроку.
ХI. Повторение
− А сейчас приступим к повторению. Найдите часть от числа, выраженную дробью.
Список литературы
- Петерсон Л. Г. Математика. 4 класс. – М. «Ювента».
- Петерсон Л. Г. Методические рекомендации. – М. «Ювента», 2004.
|