Официальный сайт janmille 24/7/365

Вы не зарегистрированы

Авторизация



Исследовательская работа: «История возникновения квадратных уравнений"

Submitted by Татьяна Леонидовна Пожарская on пн, 01/09/2014 - 22:03

Министерство образования и науки РТ

Муниципальное бюджетное общеобразовательное учреждение

 «Усадская средняя общеобразовательная школа

 Высокогорского муниципального района Республики Татарстан»

   

 

 

 

 

 

 

 

Исследовательская работа:

«История возникновения квадратных уравнений»

 

 

 

 

 

 

 

 

   Выполнила: Андреева Екатерина,

ученица 8Б класса

                                                            Научный руководитель:

                                                                           Пожарская Татьяна Леонидовна,

учитель математики

 

 

 

 

с. Усады, 2014г.

 

Оглавление

 

Введение. 3

Квадратные уравнения в Древнем Вавилоне. 5

Как составлял и решал Диофант квадратные уравнения. 7

Квадратные уравнения в Индии. 9

Квадратные уравнения в Китае (1 тысячелетие до н.э.). 11

Квадратные уравнения у ал-Хорезми. 12

Квадратные уравнения в Европе XII-XVII в. 14

Заключение. 15

Литература. 16

Приложение. 17

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Введение

Кто хочет ограничиться настоящим

                                                                                   без знания прошлого,

                                                                                 тот никогда его не поймет.

Г.В. Лейбниц

 

Уравнения в школьном курсе математики занимают ведущее место, но ни один из  видов уравнений не нашел столь широкого применения, как квадратные уравнения. 

Уравнение второй степени  или квадратные уравнения,  люди  умели решать еще в Древнем Вавилоне во II тысячелетии до нашей эры. Задачи, приводящие к квадратным уравнениям, рассматриваются во многих древних математических рукописях и трактатах. И в  настоящее время многие задачи алгебры, геометрии, физики  так же решаются с помощью квадратных  уравнений. Решая их, люди находят ответы на различные вопросы науки и техники.

Цель данного исследования – изучить историю возникновения квадратных уравнений.

Для достижения данной цели необходимо решить следующие задачи:

  1. Изучить научную литературу по теме.
  2. Проследить историю возникновения квадратных уравнений.

Объект исследования: квадратные уравнения.

Предмет исследования: история возникновения квадратных уравнений.

Актуальность темы :

  1. Решением  квадратных уравнений люди занимались еще с древних веков. Мне захотелось узнать историю возникновения квадратных уравнений.
  2. В школьных учебниках нет информации об истории возникновения квадратных уравнений.

Методы исследования:

  1. Работа с учебной и научно-популярной литературой.
  2. Наблюдение, сравнение, анализ.

Научная ценность работы, на мой взгляд, заключается в том, что данный материал может быть интересен школьникам, увлекающимся математикой,  и учителям на факультативных занятиях.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Квадратные уравнения в Древнем Вавилоне.

 

Вавилонское царство возникло в начале II тысячелетия до н. э. на территории современного Ирака, придя на смену Шумеру и Аккаду и унаследовав их развитую культуру. Просуществовало до персидского завоевания в 539 году до н. э.

Вавилоняне писали клинописными значками на глиняных табличках, которые в немалом количестве дошли до наших дней (более 500000, из них около 400 связаны с математикой). Поэтому мы имеем довольно полное представление о математических достижениях учёных Вавилонского государства.

 В Древнем Вавилоне  необходимость решать уравнения не только первой, но и второй степени  была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики.

Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, кроме неполных, и такие, например, полные квадратные уравнения:

х2 + х =

х2 - х = 14,5        

Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены.

Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.

Пример, взятый из одной из глиняных табличек этого периода.

«Площадь, состоящая из суммы двух квадратов, составляет 1000. Сторона одного из квадратов составляет стороны другого квадрата, уменьшенные на 10. Каковы стороны квадратов?»

Это приводит к уравнениям, решение которых сводится к решению квадратного уравнения , имеющему положительный корень .

В действительности решение в клинописном тексте ограничивается, как и во всех восточных задачах, простым перечислением этапов вычисления, необходимого для решения квадратного уравнения:

«Возведи в квадрат 10; это дает 100; вычти 100 из 1000; это дает 900» и т. д

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Как составлял и решал Диофант квадратные уравнения

 

Диофант представляет одну из наиболее трудных загадок в истории науки. Он был одним из самых своеобразных древнегреческих математиков был Диофант Александрийский, труды которого имели большое значение для алгебры и теории чисел. До сих пор не выяснены ни год рождения, ни дата смерти Диофанта.  Промежуток времени, когда мог жить Диофант, составляет полтысячелетия! Полагают, что он жил в III в.н.э. Зато место жительства Диофанта хорошо известно — это знаменитая Александрия, центр научной мысли эллинистического мира.

 Из работ Диофанта самой важной является “Арифметика”, из 13 книг которой только 6 сохранились до наших дней.

В «Арифметике» Диофанта нет систематического изложения алгебры, однако в ней содержится систематизированный ряд задач, сопровождаемых объяснениями и решаемых при помощи составления уравнений разных степеней.

При составлении уравнений Диофант для упрощения решения умело выбирает неизвестные.

Вот, к примеру, одна из его задач.

Задача:  «Найти два числа, зная, что их сумма равна 20, а произведение - 96»

Диофант рассуждает следующим образом: из условия задачи вытекает, что искомые числа не равны, так как если бы они были равны, то их произведение равнялось бы не 96, а 100. Таким образом, одно из них будет больше половины их суммы, т.е. 10 + х, другое же меньше, т.е. 10 - х. Разность между ними .

Отсюда уравнение:

(10 + х)(10 - х) = 96

или же:

100 - х2 = 96

х2 - 4 = 0 (1)

Отсюда х = 2. Одно из искомых чисел равно 12, другое 8. Решение х = -2 для Диофанта не существует, так как греческая математика знала только положительные числа.

Если мы решим эту задачу, выбирая в качестве неизвестного одно из искомых чисел, то мы придем к решению уравнения

у(20 - у) = 96,

у2 - 20у + 96 = 0. (2)

Ясно, что, выбирая в качестве неизвестного полуразность искомых чисел, Диофант упрощает решение; ему удается свести задачу к решению неполного квадратного уравнения (1).

Квадратные уравнения из арифметики Диофанта:

  1. 12x2 +x = 1
  2. 630x2+73x=6.

 

 

Квадратные уравнения в Индии

Еще в глубокой древности Индия славилась знаниями в области астрономии, грамматики и других наук.

Наибольших успехов Индийские ученые достигли в области математики. Они явились основоположниками арифметики и алгебры, в разработке которых пошли дальше греков.

Задачи на квадратные уравнения встречаются уже в астрономическом трактате «Ариабхаттиам», составленном в 499г. индийским математиком и астрономом Ариабхаттой. Другой индийский ученый, Брахмагупта (VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме: ах2+bх=с, а>0.

Правило Брахмагупты по существу совпадает с нашим.
В Древней Индии были распространены публичные соревнования
 в  решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи».

 Задачи часто облекались в стихотворную форму. 
Вот одна из задач знаменитого индийского математика XII в. Бхаскары:

«Обезьянок резвых стая,

 Всласть поевши, развлекалась.

Их в квадрате часть восьмая,

На поляне забавлялась.

А двенадцать по лианам…

Стали прыгать, повисая… 

Сколько ж было обезьянок,

Ты скажи мне, в этой стае?»

Решение Бхаскары свидетельствуют о том, что он знал о двузначности корней квадратных уравнений. 

Соответствующее задаче уравнение

(  х)2+12=х

Бхаскара пишет под видом х2 - 64х = -768 и, чтобы дополнить левую часть этого уравнения до квадрата, прибавляют к обеим частям 322,получая затем:

х2 -64х+322=-768+1024,

(х-32)2=256,

х-32=±16,

х1=16, х2=48. 

 

Квадратные уравнения в Китае (1 тысячелетие до н.э.).

Первые дошедшие до нас китайские письменные памятники относятся к эпохе Шан (XVIII--XII вв. до н. э.). И уже на гадальных костях XIV в. до н. э., найденных в Хэнани, сохранились обозначения цифр. Но подлинный расцвет науки начался после того, как в XII в. до н. э. Китай был завоёван кочевниками Чжоу. В эти годы возникают и достигают удивительных высот китайская математика и астрономия. Появились первые точные календари и учебники математики. К сожалению, «истребление книг» императором Цинь Ши Хуаном (Ши Хуанди) не позволило ранним книгам дойти до нас, однако они, скорее всего, легли в основу последующих трудов.

«Математика в девяти книгах» - это первое математическое сочинение из ряда классических в древнем Китае, замечательный памятник древнего Китая времени династии Ранней Хань (206г. до н.э. – 7 г. н. э.). В этом сочинении содержится разнообразный и богатый по содержанию математический материал, в том числе и квадратные уравнения.

Китайская задача: «Имеется водоём со стороной 10 чи. В центре его растёт камыш, который выступает  над водой на 1 чи. Если потянуть камыш к берегу, то он как раз коснётся его. Спрашивается: какова глубина воды и какова длина камыша?»

Решение.

(х+1)22+52,

х2+2х+1= х2 +25,

2х=24,

х=12,

12+1=13

Ответ:12чи; 13чи.

 

Квадратные уравнения у ал-Хорезми

«Я составил краткую книгу об исчислении алгебры и алмукабалы, заключающую в себе простые и сложные вопросы арифметики, ибо это необходимо людям.»  Ал-Хорезми Мухаммед бен-Муса.

Ал-Хорезми  (Узбекистан)  известен прежде всего своей «Книгой о восполнении и противопоставлении» («Ал-китаб ал мухтасар фи хисаб ал-джабр ва-л-мукабала»), от названия которой произошло слово «алгебра». Этот трактат является первой дошедшей до нас книгой, в которой систематически изложена классификация квадратных уравнений и даны формулы их решения.

В теоретической части своего трактата ал-Хорезми даёт Классификацию уравнений 1-й и 2-й степени и выделяет шесть их видов:

1) «Квадраты равны корням», т. е. ах2 = bх. ( пример: )

2) «Квадраты равны числу», т. е. ах2 = с.( пример:  )

3) «Корни равны числу», т. е. ах = с. ( пример: )

4) «Квадраты и числа равны корням», т. е. ах2 + с = bх. (пример:  )

5) «Квадраты и корни равны числу», т. е. ах2 + bх =с.

 (пример: )

6) «Корни и числа равны квадратам», т. е. bх + с == ах2. (пример: )

Для ал-Хорезми, избегавшего употребления отрицательных чисел, члены каждого из этих уравнений слагаемые, а не вычитаемые. При этом заведомо не берутся во внимание уравнения, у которых нет положительных решений. Автор излагает способы решения указанных уравнений, пользуясь приемами ал-джабр и ал-мукабала. Его решение, конечно, не совпадает полностью с нашим. Уже не говоря о том, что оно чисто риторическое, следует отметить, например, что при решении неполного квадратного уравнения первого вида ал-Хорезми, как и все математики до XVII в., не учитывает нулевого решения, вероятно, потому, что в конкретных практических задачах оно не имеет значения. При решении полных квадратных уравнений ал-Хорезми на частных числовых примерах излагает правила решения, а затем их геометрические доказательства.

Приведем пример.

«Квадрат и число 21 равны 10 корням. Найти корень» (подразумевается корень уравнения х2 + 21 = 10х).

Решение автора гласит примерно так: « Раздели пополам число корней, получишь 5, умножь 5 само на себя, от произведения отними 21, останется 4. Извлеки корень из 4, получишь 2. Отними 2 от 5, получишь 3, это и будет искомый корень. Или же прибавь 2 к 5, что даст 7, это тоже есть корень».

Знаменитое уравнение Аль-Хорезми:  «Квадрат и десять корней равны 39». x2 + 10x = 39 (IX век) . В своем трактате он пишет: «Правило таково: раздвой число корней, получится в этой задаче пять. Прибавь это к тридцатидевяти, будет шестьдесят четыре. Извлеки из этого корень, будет восемь, и вычти из этого половину числа корней, т.е. пять, останется три: это и будет корень квадрата, который ты искал»

 

 

 

 

 

 

 

 

Квадратные уравнения в Европе XII-XVII в.

Формы решения квадратных уравнений по образцу Аль-Хорезми в Европе были впервые изложены в «Книге абака», написанной в 1202г. итальянским математиком Леонардом Фибоначчи. Автор разработал самостоятельно некоторые новые алгебраические примеры решения задач и первый в Европе подошел к введению отрицательных чисел.

Эта книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из этой книги переходили почти во все европейские учебники XIV-XVII вв. Общее правило решения квадратных уравнений, приведенных к  виду x2 + bх = с при всевозможных комбинациях знаков и коэффициентов b, c, было сформулировано в Европе в 1544 г. М.Штифелем.

Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVI в. учитывают, помимо положительных, и отрицательные корни. Лишь в XVII в. благодаря трудам Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид.

 

Заключение. 

Квадратные уравнения - это фундамент, на котором покоится величественное здание алгебры. Различные уравнения как квадратные, так и уравнения высших степеней решались нашими далекими предками. Эти уравнения решали в самых разных и отдаленных друг от друга странах. Потребность в уравнениях была велика. Уравнения применялись в строительстве, в военных делах, и в бытовых ситуациях.

 В настоящее время, умение решать квадратные уравнения необходимо для всех.  Умение быстро, рационально и правильно решать квадратные уравнения облегчает прохождение многих тем курса математики. Квадратные уравнения решаются   не только на уроках математики, но и на уроках физики, химии, информатики. Большинство практических задач реального мира тоже сводится к решению квадратных уравнений.     

 

Литература

  1. Башмакова И. Г. Диофант и диофантовы уравнения. М.: Наука, 1972.
  2. Березкина Э.И. Математика древнего Китая - М.: Наука, 1980  
  3. Пичурин Л.Ф. За страницами учебника алгебры: Кн. для учащихся

      7-9 кл. сред.шк. – М.: Просвещение, 1990

  1. Глейзер Г. И. История математики в школе VII – VIII кл. Пособие для учителей. – М.: Просвещение, 1982.

Видео скачать на телефон бесплатно


Смотреть русское с разговорами видео

Online video HD

Видео скачать на телефон

Русские фильмы бесплатно

Full HD video online

Смотреть видео онлайн

Смотреть HD видео бесплатно

School смотреть онлайн