Оформление: на доске записано: «Игра «Счастливый случай» по теме «Показательная функция».
ГЕЙМЫ:
1.Разминка.
2.Гонка за лидером
3.Спешите видеть.
4.Темная лошадка.
5.Дальше, дальше.
ХОДУРОКА.
1.Постановка цели.
Игра.
1 гейм. Разминка.
Каждая команда получает кроссворд. Та команда, которая быстрее разгадает все шесть слов кроссворда, получает 1 балл.
Кроссворд «И в шутку и всерьез».
По горизонтали: 1.Есть у любого слова, у растения и может быть у уравнения.
По вертикали:2.Название функции, любой из графиков, которой обязательно пройдет через точку (0;1). 3.Исчезающая разновидность учеников. 4.Проверка учеников на выживание. 5.Ученый математик, механик и астроном. Его высказывание о показательной функции напечатано в учебнике перед первым параграфом. 6.Другое название независимой переменной в функции.
2 гейм. Гонка за лидером. (По продолжительности самый длинный гейм
примерно 20-25 минут).На учительском столе лежат карточки с заданием. Участники по очереди выбирают карточки, записывают задание на доске и все три команды решают это задание, решение записывают фломастером на альбомном листе и вывешивают на доску. Та команда, которая первая решит правильно, получает 1 балл.
На решение каждого задания учащиеся затрачивают примерно 3-4 минуты.
3 гейм «Спешите видеть» (3-5 минут).
Каждой команде предлагается достроить два графика и перечислить их свойства.
4 гейм «Темная лошадка».
В последнее время много говорят и пишут об НЛО, а к нам на игру пожаловал НМО - неопознанный математический объект. Он здесь, в конверте. Каждая команда получает описание этого НМО и в течение 2-3 минут угадывает, что находится в конверте.
Например, в конверте записано число П.
«Это я знаю и помню прекрасно», - этими словами начинается всем известный стишок, который помогает запомнить десятичные приближения того иррационального числа, которое очень часто используется в математике.
Название этого числа, его обозначение – первая буква греческого слова, в переводе означает «окружность». Оно было введено в 1706 году английским математиком Ч. Джонсоном. Архимед, Ал-Каши, Ф. Виет, В. Шенкс и многие другие пытались вычислить наибольшее количество знаков у этого иррационального числа, а теперь в этом соревновании принимают участие и ЭВМ. Что это за число?»